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Effective theory for v™k™gT color dynamics in hot non-Abelian plasmas
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~Received 13 December 1999; published 23 June 2000!

A proper sequence of effective theories, corresponding to larger and larger distance scales, is crucial for
analyzing real-time equilibrium physics in hot non-Abelian plasmas. For the study of color dynamics~by
which I mean physics involving long wavelength gauge fluctuations!, an important stepping stone in the
sequence of effective theories is to have a good effective theory for dynamics with wave numberk well below
the Debye screening mass. I review how such dynamics is associated with inverse time scalesv!k. I then give
a compact way to package, in thev!k limit, Bödeker’s description ofk!m physics, which was in terms of
Vlasov equations with collision terms. Finally, I show how the resulting effective theory can be reformulated
as a path integral.

PACS number~s!: 11.10.Wx
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I. INTRODUCTION

The color fluctuations of very hot, weakly coupled, no
Abelian plasmas are non-perturbatively large at dista
scalesR of order (g2T)21. Their dynamics is of particula
interest because it is responsible for the large rate of bar
number violation in hot electroweak theory, and so lies at
heart of electroweak scenarios for baryogenesis. ‘‘Hot’’ h
means hot enough to~a! be ultra-relativistic, ~b! ignore
chemical potentials, and~c! be in the hot, symmetric phase
there is a Higgs mechanism. It is now known@1# that the
time scale associated with non-perturbative color dynam
is t;@g4T ln(1/g)#21, which is long in the sense thatt@R
~in the weakly coupled limit!. Equivalently, the spatial mo
mentum and the frequency scales associated with n
perturbative color dynamics are

k;g2T, v;g4T ln~1/g!. ~1.1!

This momentum scalek is small compared to the Deby
mass

m;gT. ~1.2!

The goal of this paper is to present an effective theory
color dynamics on scalesv!k!m, to formulate that effec-
tive theory solely in terms of gauge fieldsAm(t,x), and to
write the effective theory in path integral form.

It has been known for some time@2# how to write a
leading-order effective theory for color dynamics at the sc
k;m;gT, where leading-order means that corrections
suppressed by powers ofg. The zero-temperature non
Abelian Maxwell equations are modified by what are kno
as ‘‘hard thermal loops,’’ which incorporate the effects
interactions of the softk;gT degrees of freedom with har
k;T thermal excitations in the plasma. There is a stand
way of writing this effective theory which has a simp
physical interpretation@3#. One treats the soft fields class
cally, and replaces the hard excitations by classical distr
tion functionsn(x,p,t) which describe the density of har
excitations at positionx with momentump. Writing down
Maxwell’s equations, together with an appropriately gau
0556-2821/2000/62~3!/036003~10!/$15.00 62 0360
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covariant, linearized Boltzmann equation forn, then pro-
duces the leading-order effective theory.n is a density matrix
in color space, and the piece of it that’s relevant to lon
distance color dynamics~at leading order! is the adjoint color
piece. It is also convenient and conventional to integrate
adjoint piece over the magnitudeupu of momentum, replac-
ing n(x,p,t) by an adjoint fieldW(x,v,t), wherev[p̂. The
resulting equations, ifW is given a convenient overall nor
malization, are@4#

~Dt1v•D!W2v•E50, ~1.3a!

DnFmn5 j m5m2^vmW&v , ~1.3b!

where m;gT is again the leading-order Debye mas
^•••&v denotes angular averaging over the directionv, and
vm[(1,v). Formally solving the Boltzmann equation forW
and plugging the result into the Maxwell equation, one o
tains the hard-thermal loop equation of motion for the s
gauge field, which is

DnFmn5 j m5m2^vm~Dt1v•D!21v•E&v . ~1.4!

This equation contains, among other things, the physics
Debye screening, which screens static electric fields over
tances of order 1/m.

A qualitatively important point@5# can be extracted from
Eq. ~1.4!: k!m physics is dominated by frequenciesv!k.
For the sake of quickly reviewing this point here, focus f
simplicity on the linear terms on the right-hand side of E
~1.4!, focus on theirv!k behavior, and let us check sel
consistently that the dominant frequency falls in thev!k
regime. Focus in particular on the transverse modes of
gauge field, which are not Debye screened fork!m. In the
v!k limit, one can show that the spatial currentj given by
the right-hand side of Eq.~1.4! becomes, in the transvers
sector,

jT.
pm2

4k
ET 1 ~higher order inA). ~1.5!

Fixing A050 gauge, and working in Fourier space, Am
pere’s Law then becomes
©2000 The American Physical Society03-1
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~2v21k2!AT.
pm2

4k
ivAT 1~higher order inA).

~1.6!

The coefficient ofAT on the right-hand side is simply th
v!k limit of the transverse hard thermal loop self-ener
@6#. For v!k, Eq. ~1.6! becomes

k2AT;
m2

k
ivAT ~1.7!

in orders of magnitude, if interactions are ignored. The ch
acteristic frequency is then of order

uvu;
k3

m2 ~ignoring interactions!, ~1.8!

and we can now verify that this frequency indeed satisfies
assumed relationshipv!k when k!m. For this reason, in
discussing effective theories fork!m, it is relevant and use
ful to also specialize tov!k. Interactions modify the esti
mate ~1.8! when k!g @1,7#, where g;g2Tln(1/g) is the
inverse mean free time between color randomizing co
sions, but the result that the characteristic frequency scav
is small compared tok is unaffected.

The theory~1.4! represents an effective theory for m
mentum scales small compared toT. Bödeker has discusse
what happens if one goes further and integrates out the p
ics down to some scalem!m. The hard particles which
microscopically, make up the color distributionsW can have
color-randomizing collisions byt-channel gluon exchange
Such collisions are dominated by momentum exchangesq in
the rangeg2T&q&m. Integrating out part of this momentum
range generates an explicit collision term in the Boltzma
equation, replacing Eq.~1.3a! by

~Dt1v•D!W2v•E52dĈ W1j, ~1.9a!

DnFmn5 j m5m2^vmW&v . ~1.9b!

dĈ is a linearized collision operator. The magnitude ofdĈ is
logarithmically sensitive to the separation of the scalesm and
m, and Bödeker has calculateddĈ at leading-order in tha
logarithm to be the local~in x) operator defined by

dĈ W~v![^dC~v,v8! W~v8!&v8 , ~1.10a!

dC~v,v8!'g~m!FdS2~v2v8!2
4

p

~v•v8!2

A12~v•v8!2G , ~1.10b!

g~m!'CAaT lnS m

m D . ~1.10c!

Here' denotes equality at leading-log order, meaning t
corrections are down by@ ln(m/m)#21, anddS2 is ad-function
on the unit sphere, normalized so that^dS2(v2v8)&v51. To
leading log order,g(m) is what’s known as the hard therm
gluon damping rate@8# if one setsm;g2T. This represents
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the inverse mean free path for color-randomizing collisio
of the hard particles that, microscopically, make up the co
distributionW.

The collision term in the Boltzmann equation damps t
system towards equilibrium. In order to describe the phys
of thermal fluctuations around equilibrium, one must a
include a thermal noise term, which is thej shown in Eq.
~1.9a!. This equation is therefore an example of a Lange
equation. Bo¨deker derived the noise term, but one can a
argue for it on general principles based on the fluctuati
dissipation theorem~for instance, along the lines of Ref.@7#
or @9#!. Bödeker found Gaussian white noise with correlati

^^ja~v,x,t ! jb~v8,x8,t8!&&5
2T

m2 dC~v,v8! dabd (3)~x2x8!

3d~ t2t8!. ~1.11!

In writing formulas later on, it will be convenient to suppre
indices andd functions and write correlations like the abov
in the short-hand notation

^^jj&&5
2T

m2 dĈ. ~1.12!

The combination of Eqs.~1.9! and~1.11! make up Bo¨de-
ker’s effective theory fork!m. For Bödeker, this version of
the theory was merely a stepping stone to deriving an e
simpler and more infrared effective theory fork!g, where
W was eliminated. That theory is of the form

D3B5sE1z, ~1.13a!

^^z i
a~x,t ! z j

b~x8,t8!&&52sT d i j dabd (3)~x2x8!d~ t2t8!.

~1.13b!

It has been used as the basis for numerical simulation
obtain the leading-log result for the hot electroweak bary
number violation rate@10#.

Now return to the previousk!m effective theory~1.9!.
The purpose of this paper is to present a cleaner, tidier
sion of this effective theory, more suitable for going beyo
leading-log order in calculations. In particular, I shall~1!
take thev!k limit, discussed earlier,~2! show how to elimi-
nateW from the result to obtain a single Langevin equati
for A, somewhat analogous to Eq.~1.4! but with damping
and noise, and~3! show how to rewrite this Langevin equa
tion as a path integral.

Part of the reason for wanting to take thev!k limit is a
pragmatic one. In field theory calculations, one tends to th
of the philosophy of effective theories in the language of
Wilsonian renormalization group—‘‘integrating out mode
with k*m.’’ But a Wilson-style approach is generally im
practical for perturbative calculations beyond lowest order
one wants to setm to be of order some characteristic scale
the problem. In practice, one usuallykeepsmodes withk
@m and instead uses renormalization subtractions to ach
an equivalent result. Typically, dimensional regularization
used to regularize the ultraviolet. In an effective theory
scalesk!m, it does not matter much what the physics is
3-2
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the ultraviolet (k@m)—one adjusts the parameters of t
effective theory to correct for the difference between the U
behavior of the effective theory and the UV behavior of t
real theory. So, for instance, the baredĈ in Eq. ~1.9a! should
be set to thedifferencebetween the collisions generated
the real theory due to gluon exchange withq.m, and those
generated in the effective theory due to gluon exchange w
q.m. The difficulty with Bödeker’sk!m effective theory
as it stands is that, if one does not simply throw away
k@m modes~which is difficult to do by hand in a gauge
invariant manner!, then the equations~1.9! in fact reproduce
all of the complicatedk;m behavior of the original hard
thermal loop theory~1.4!: plasmons, the Debye screenin
threshold, etc. Because of this, there isno difference between
the q.m contribution todĈ in the two theories, and on
should set the baredĈ in Eq. ~1.9a! to zero, returning right
back to the original hard thermal loop description~1.9!. For
the leading-log calculations of Bo¨deker, none of this
mattered—one could think of Wilsonian-style cutoffs atk
5m, and all the associated difficulties are sub-leading ord
To cleanly discuss effects beyond leading-log order, ho
ever, a more systematic approach to thek!m effective
theory is required, and it behooves us to reformulate
effective theory in a form where its UV behavior is as simp
as possible and has no structure fork@m.

One of the other goals of this paper will be to reformula
thek!m effective theory as a path integral.@As a warm-up,
I will also review how to do the same for the simplerk!g
effective theory of Eq.~1.13!.# One reason this is useful i
that path integrals provide, for many people, a more fami
starting point for calculations than do Langevin equatio
Another reason is that one can fix gauges for perturba
calculations by the usual Faddeev-Popov procedure.
theory ~1.13!, for instance, was derived by Bo¨deker specifi-
cally in A050 gauge. By converting theA050 gauge result
into a path integral and then generalizing the result to
gauge-invariant form, it will be easy to see how to correc
account for other, non-ghost-free gauge fixings, such as C
lomb gauge. Such gauges can be very convenient for ca
lations.

The advantages of the formalism discussed in this pa
are put into use by me and Yaffe in Refs.@11,12#, where we
compute the next-to-leading-log corrections to Bo¨deker’s
far-infrared effective theory~1.13!, and use it to analyze
next-to-leading-logarithm corrections to the color conduct
ity and the hot electroweak baryon number violation rate

Before continuing, I should be explicit about one tech
cal point. Most of the various effective theories discussed
this paper are not ultraviolet finite and require regularizat
and renormalization@the one exception being Bo¨deker’s final
effective theory~1.13!#. I shall implicitly assume in this pa
per that divergences associated with small spatial scales
somehow been appropriately regulated. For instance, s
divergences are regulated in Ref.@12# using dimensional
regularization. I will, however, later focus explicitly on regu
larization issues associated with small time scales, wh
correspond to well-known ambiguities with certain types
Langevin equations and which may not be familiar to ma
readers.
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II. PREVIEW OF RESULTS

I will recap Bödeker’s original k!m effective theory
~1.3!, now splitting Maxwell’s equations into Gauss’ law an
Ampere’s law:

~Dt1v•D!W2v•E52dĈ W1j, ~2.1a!

D•E5m2^W&, ~2.1b!

2DtE1D3B5m2^vW&. ~2.1c!

My result for appropriate equations in thev!k limit, dis-
cussed in Sec. III, will be

v•DW2v•E52dĈ W1j, ~2.2a!

05m2^W&, ~2.2b!

D3B5m2^vW&. ~2.2c!

In Sec. IV, I discuss the form of Gauss’ law~2.2b! and
Ampere’s law~2.2c! if the Boltzmann equation~2.2a! is used
to eliminateW. In Sec. V, I then go on to show how Gaus
law and Ampere’s law, together with the noise correlati
~1.11!, can be combined into a simple form analogous
Eq. ~1.13!,

D3B5s̄~D! E1z, ~2.3a!

^^zz&&52T s̄~D!, ~2.3b!

where the operators̄(D) will be defined later. This is an
example of a Langevin equation with ‘‘multiplicativ
noise,’’ which simply means that the noise amplitude~2.3b!
depends on the dynamical variableA. Such equations are
notorious for being ambiguous and sensitive to the details
ultraviolet regularization. In Sec. VI, I will address thes
issues, and show how to formulate the theory as a gau
invariant path integral. The path integral has the form

Z5E @DA0~x,t !#@DA~x,t !#expS 2E dtd3xLD , ~2.4!

L5
1

4T
@2s̄~D! E1D3B#Ts̄~D!21

3@2s̄~D! E1D3B#1L1@A#. ~2.5!

Very roughly speaking, the Gaussian integral in2s̄(D) E
1D3B implements a Gaussian probability distribution f
2s̄(D) E1D3B, and so implements Eq.~2.3!. The term
L1@A# is a complicated factor related to a Jacobian and
resolving the aforementioned ambiguities, and it will be d
cussed later.

III. THE v™k LIMIT OF THE W EQUATIONS

The v!k limit of the Boltzmann equation~2.1a! is easy
to understand: we can ignore theDtW term compared to the
3-3
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PETER ARNOLD PHYSICAL REVIEW D 62 036003
v•DW term. The resulting equation~2.2a! is no longer an
evolution equation forW; instead,W is determined solely by
the instantaneous values ofE andj. Formally,

W5Ĝ~v•E1j! ~3.1a!

with

Ĝ[~v•D1dĈ!21. ~3.1b!

Let us now analyze Gauss’ law~2.1b! using this smallv
approximation toW:

D•E.m2^Ĝ~v•E1j!&. ~3.2!

Again, the notation̂ •••& indicates averaging overv-space,
but one must carefully keep in mind thatdĈ and Ĝ are
operators inv-space. This notation is that of Ref.@7#, and the
reader may find a thorough discussion of it in the introd
tion of Ref. @12#. It is now useful to splitE into longitudinal
and transverse piecesEL andET @13#, defined by the longi-
tudinal and transverse projection operators

PL
i j 5DiD22D j , ~3.3a!

PT
i j 5d i j 2PL

i j , ~3.3b!

where i and j run over spatial indices andD22 means
(D•D)21. The order of magnitude of the left-hand side
Eq. ~3.2! is thenO(kEL). The right-hand side of Eq.~3.2!
has, among other things, a termm2^Ĝv•EL& involving EL .
Using the projection operator~3.3a! and a frequently usefu
trick @12#, this term can be rewritten as

m2^Ĝv•EL&5m2^Ĝv•D&D22D•E

5m2^Ĝ~v•D1dĈ!&D22D•E5m2D22D•E.

~3.4!

The middle equality follows becausedĈ has the property of
annihilating functions that do not depend ofv, and so, as a
general rule, ^•••dĈ&50 and ^dĈ•••&50. ~See Refs.
@1,13,12# for discussions of this.! From Eq.~3.4!, we see that
the m2^Ĝv•EL& term is O(m2k22D•E). That’s bigger than
theD•E term on the left-hand side of Eq.~3.2! by a factor of
m2/k2, and m2/k2 is large for the modes whose physics
wish to correctly describe (k!m). So it is permissible, when
implementing the constraints of Gauss’ law, to ignore
contribution of theD•E on the left-hand side, leaving

0.m2^Ĝ~v•E1j!&. ~3.5!

Rewriting back in terms ofW, this is thev!k equation
~2.2b! presented earlier.

Finally, consider Ampere’s law~2.1c!. For the moment,
think about it inA050 gauge, where it becomes

] t
2A1D3D3A5m2^vW&. ~3.6!
03600
-

e

The first term isO(v2A) and the secondO(k2A). This sug-
gests that one may drop the first term in comparison to
second—at least in the transverse sector. (D3B5D3D
3A is purely transverse.! The result is the equation~2.2c!
presented earlier. For this equation to be consistent, it
better be that the right-hand side is purely transverse as
~in the v!k limit !. Indeed,

D•^vW&5^v•DW&5^v•E1j&5^j&, ~3.7!

where I have used thev!k Boltzmann equation~2.2a!. The
v-averagê j&v of the noisej vanishes for the following rea
son @1#. Sincej is Gaussian noise, so is^j&v . But

^^ ^j& ^j& &&5^^ ^j~v! j~v8!& &&v,v8}^dĈ~v,v8!&v,v850,
~3.8!

so ^j& is simply zero. Then Eq.~3.7! implies that^vW& is
indeed purely transverse in thev!k effective theory.

IV. TWO EQUATIONS FOR A

There is a conceptual trap lurking in thev!k equations
~2.2! that is easy to fall into. Equation~2.2b! appears to say
that j 05m2^W& vanishes in thev→0 limit. And so, by
Gauss’ law, thatD•E 5 0. And one might take that to mea
that longitudinal electric fieldsEL are negligible compared to
transverse fieldsET in the v!k limit. This is incorrect.1

Equation~2.2b! merely reflects the fact that theD•E term in
Eq. ~3.2! is negligible compared to the individual terms o
the right-hand side of that equation—there is no presump
about how smallEL is relative to ET . It is perhaps less
confusing to eliminateW altogether, and replace Eqs.~2.2!
by the two equations

05m2^Ĝ~v•E1j!&, ~4.1a!

D3B5m2^vĜ~v•E1j!&. ~4.1b!

The form ~2.2! in terms ofW has the advantage of having
more direct correspondence with the form of the origin
equations~1.9!. I will want to refer to theW-eliminated form
~4.1! in the next section, however, and so it is useful
simplify the noise terms in these equations. In particular,
terms m2^Ĝj& and m2^vĜj& are proportional to Gaussia
noisej and so are themselves Gaussian noise, and Gaus
noise can be completely specified just by specifying its c
relator. So, rewrite the two equations~4.2! as

1Consider, for example, the case ofk!g, so that Eq.~1.13! gives
an effective description of the physics, butk@g2T, so that the
physics is still perturbative. And consider, for example, the f
quency scalev;k2/s. Then Eq.~1.13! gives the order of magni-
tude relationsE;z, which means that all polarizations ofE are the
same order of magnitude. See Ref.@13# for a detailed discussion o
why the effective theory~1.13! applies to the longitudinal as well a
transverse sector.
3-4
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05m2^Ĝv&•E1h, ~4.2a!

D3B5m2^vĜv&•E1zT , ~4.2b!

where

^^hh&&5m4^Ĝ^^jj&&ĜÁ&52Tm2^Ĝ dĈ ĜÁ&, ~4.3a!

^^ zTzT &&5m4^vĜ^^jj&&ĜÁv&52Tm2^vĜ dĈ ĜÁv&.
~4.3b!

The right-hand sides implicitly have factors ofd(t2t8),
which I have suppressed. The transpose onĜ indicates trans-
position in x-space, color space, andv-space.Di is the ad-
joint representation covariant derivative and satisfiesDi

Á5

2Di . The linearized collision operatordĈ is symmetric in
v-space since, by rotation invariance, it can only depend2 on
v•v8. @See Eq.~1.10b!, for example, for the explicit version
at leading log order.# So

ĜÁ5~2v•D1dĈ!21. ~4.4!

Now note that

Ĝ dĈ ĜÁ5 1
2 Ĝ@~ĜÁ!211~Ĝ!21#ĜÁ5 1

2 ~Ĝ1ĜÁ!,
~4.5!

so

^^hh&&5Tm2^Ĝ1ĜÁ&, ~4.6!

^^ zTzT &&5Tm2^v~Ĝ1ĜÁ!v&. ~4.7!

Taking v→2v in the v average shows that theĜ and ĜÁ

terms give the same result, so that

^^hh&&52Tm2 ^Ĝ&, ~4.8a!

^^ zTzT &&52Tm2 ^vĜv&. ~4.8b!

Finally, we can verify thath andzT are independent:

^^hzT &&5Tm2^~Ĝ1ĜÁ!v&50, ~4.9!

where the last equality follows byv→2v in the term involv-
ing ĜÁ. The noise correlations~4.8!, combined with the two
equations~4.2! for A, give a complete description of thev
!k!m effective theory.

V. ONE EQUATION FOR A

It is possible to eliminateW and write a single equation
for A that embodies all of Eq.~2.2! or Eq. ~4.2!. Define the

2This argument assumes that collisions do not depend on spi
that spin has been averaged over. Theq&gT collisions that are of
interest to this problem are indeed insensitive to spin at lead
order in coupling.
03600
projection operatorP̂0 to be an operator inv-space that
projects out functions that are independent ofv; that is,

P̂0f ~v!5^ f ~v!&. ~5.1!

The trick is to take the 12 P̂0 projection of Eq.~2.2a!, and to
note thatP̂0 vanishes onv•E and onj ~becausê j&50, as
explained earlier!. So

~12 P̂0!~v•D1dĈ!W5v•E1j. ~5.2!

Now note that Eq.~2.2b! tells us thatP̂0W50, and so

~12 P̂0!~v•D1dĈ!~12 P̂0!W5v•E1j. ~5.3!

Then we can solve forW as

W5Ĝ1~v•E1j!, ~5.4a!

Ĝ1[@~12 P̂0!~v•D1dĈ!~12 P̂0!#21, ~5.4b!

where the inverse is understood to be taken in the sp
projected by 12 P̂0. An alternative way to obtain the sam
inverse is

Ĝ15 lim
L→`

~v•D1dĈ1L P̂0!21. ~5.4c!

Equation~5.4! appears different from the solution~3.1! used
earlier for W. Indeed it is different for arbitraryE, but it
produces the sameW whenE is such that thev!k Gauss’
law ~2.2b! is satisfied. The advantage of the present form
that it may be used to derive a single equation containing
of the dynamics of the three equations~2.2!. To proceed, use
Eq. ~5.4! in Ampere’s law~2.2c! to get Eq.~2.3a!,

D3B5s̄~D! E1z, ~5.5!

wheres̄(D) is a matrix in vector-index space,

s̄ i j ~D![m2^v i Ĝ1v j&5 lim
L→`

m2^v i~v•D1dĈ1L P̂0!21v j&,

~5.6!

andz is Gaussian noise given by

z[m2^vĜ1j&5 lim
L→`

m2^v~v•D1dĈ1L P̂0!21j&.

~5.7!

I will show in a moment that Eq.~5.5! subsumes the thre
equations~2.2!, but first I will derive the correlation of the
Gaussian noisez. Based on the analogy of Eq.~5.5! with the
far-infrared effective theory~1.13!, one might expect that the
correlation is Eq.~2.3b!. To verify it, start from the definition
~5.7! of z, which gives

or

g

3-5
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^^z iz j&&5m4^v i Ĝ1^^jj&&Ĝ1
Áv j&52Tm2 ^v i Ĝ1 dĈ Ĝ1

Áv j&.
~5.8!

By arguments that parallel those used to derive the n
correlation ~4.8b! of zT from the analogous starting poin
~4.3b! in the previous section, one obtains

^^z iz j&&52Tm2 ^v i Ĝ1v j&52T s̄~D!. ~5.9!

I will now show that the simple equations I have derive

D3B5s̄~D! E1z, ~5.10a!

^^zz&&52T s̄~D!, ~5.10b!

provide a complete description of thev!k!m effective
theory originally described by Eq.~2.2! and the correlation
~1.11!. Specifically, I will show how to recover the two in
dividual equations~4.2! of the last section for Gauss’ law
and Ampere’s law, which were the result of trivially elim
natingW from Eq. ~2.2!. It is convenient to first establish
relation between the (12 P̂0) projectedW propagatorĜ1 of
Eqs.~5.4b! and~5.4c! and the original unprojected propag
tor of Eq. ~3.1b!. The relation is

Ĝ15Ĝ2ĜP̂0^Ĝ&21Ĝ, ~5.11!

which can also be thought of as the rule

^•••~Ĝ12Ĝ!•••&52^•••Ĝ& ^Ĝ&21 ^Ĝ•••&, ~5.12!

e.g.

s̄~D!5m2^vĜ1v&5m2@^vĜv&2^vĜ&^Ĝ&21^Ĝv&#.
~5.13!

It is easy to verify Eq.~5.11! by first checking that it lives in
the space projected by 12 P̂0,

P̂0@Ĝ2ĜP̂0^G&21Ĝ#5 P̂0G2 P̂0^G&^G&21Ĝ

5 P̂0G2 P̂0G50 ~5.14!

~and similarly@Ĝ1ĜP̂0^G&21Ĝ# P̂050), and then checking
explicitly that it is the desired inverse:

@Ĝ2ĜP̂0^G&21Ĝ#Ĝ1
21

5~12 P̂0!@Ĝ2ĜP̂0^G&21Ĝ#Ĝ21~12 P̂0!

5~12 P̂0!@12ĜP̂0^G&21#~12 P̂0!

5~12 P̂0!. ~5.15!

Now I will show that the gauge field Langevin equatio
~5.10a! implies Gauss’ law~4.2a! by dotting^G&D into both
sides of Eq.~5.10a!:
03600
e

,

05^G&@D s̄~D! E1D•z#. ~5.16!

Using Eq.~5.13!,

^G&D s̄~D! E5m2^G&@^v•DĜv&2^v•DĜ&^Ĝ&21^Ĝv&#E.

~5.17!

We can simplify using the trick discussed earlier,

^v•DĜ•••&5^~v•D1dĈ!Ĝ•••&5^•••&, ~5.18!

so that

^v•DĜv&5^v&50, ~5.19a!

^v•DĜ&51. ~5.19b!

Equation~5.17! for the s̄ term then becomes

^G&D s̄~D! E52m2^Ĝv&•E. ~5.20!

So Eq.~5.16! becomes

05m2^Ĝv&•E2^G&D•z. ~5.21!

Compare to Gauss’ law~4.2a!. The last term is Gaussia
noise, and all that matters for the purpose of reproduc
Gauss’ law~4.2a! is to check thath8[2^G&D•z has the
same noise correlation~4.8a! as h of the last section. First
put together Eqs.~5.11! and ~5.18! to get

^v•DĜ1•••&5^@12^Ĝ&21Ĝ#•••&. ~5.22!

Then, using thez correlation~5.10b!,

^^h8h8&&5^Ĝ&D•^^zz&&•DÁ^ĜÁ&

522Tm2^Ĝ&^v•DĜ1v•D&^Ĝ&

52Tm2^Ĝv•D&^Ĝ&

52Tm2^Ĝ&5^^hh&&. ~5.23!

Alternatively, one could go back to the expression~5.7! for z
in terms ofj, and show directly thath8[2^G&D•z is the
same as theh[m2^Ĝj&.

Having obtained Gauss’ law, we can now check that
single equation~5.10a! also enforces Ampere’s law~4.2b!.
Expands̄ using Eq.~5.13!, so that Eq.~5.10a! becomes

D3B5m2^vĜv&•E2m2^vĜ&^Ĝ&21^Ĝv&•E1z

5m2^vĜv&•E1zT8 , ~5.24!

where the last equality uses Gauss’ law~5.21! and defines

zT8[z2^vG&D•z. ~5.25!
3-6
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One may verify that the noisezT8 is equivalent to the noisezT

~4.8b! of the previous section. It is worth mentioning thatzT8
is transverse (D•zT850), but it is not simply the transverse
projectionPTz of z.

VI. PATH INTEGRALS AND AMBIGUITIES

A. A warmup: the k™g theory

1. The path integral in A0Ä0 gauge

To warm up to talking about path integral formulatio
for the v!k!m Langevin equation~2.3a!, I will start by
discussing path integrals for the simpler, more infrared eff
tive theory described by Eq.~1.13! for v!k!g. In A050
gauge,

sȦ52D3B1z, ~6.1a!

^^ zz &&52sT. ~6.1b!

In this gauge, the above Langevin equation has a nice ph
cal interpretation, because it can be rewritten as

sȦ52
d

dA
V @A#1z, ~6.2!

where

V @A#5E d3x 1
2 Ba

•Ba ~6.3!

is the magnetic energy. This means the Langevin equatio
just an infinite degree of freedom version of the kinemat
of a highly damped particle in a potentialV(q):

sq̇i52
d

dqi
V~q!1z i , ~6.4a!

^^z i~ t ! z j~ t8!&&52sTd i j d~ t2t8!. ~6.4b!

It is well known how to rewrite such equations, and th
field theory counterparts, as path integrals,3 but I will briefly
review the steps here. Keep to the notation~6.4! for the mo-
ment, and first consider an integral over the distribution
the Gaussian noise:

Z[E @Dz~ t !#expF2
1

4sTE dtuz~ t !u2G . ~6.5!

Now insert a factor of one in the form of the equation
motion ~6.4a!:

3For a review, see, for example, Chaps. 4 and 17 of Ref.@14#.
In that reference, the determinant in Eq.~6.7! is implemented by
ghost fields~which are unrelated to gauge fixing!. That is, J@q#

5*@Db̄#@Db#exp@2*dtb̄i„sd i j ] t1¹qi
¹qj

V(q)…bj # where I have

labeled the ghostsb̄ andb.
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Z5E @Dz~ t !#expF2
1

4sTE dtuz~ t !u2G E @Dq~ t !#

3d@sq̇1“q V~q!2z#J@q#, ~6.6!

where thed function is functional, and the correspondin
Jacobian is given by a functional determinant

J@q#[deti j S d

dqi
@sq̇ j1¹qj

V~q!2z# D
5deti j S sd i j

d

dt
1¹qi

¹qj
V~q! D . ~6.7!

Now use thed-function to perform the noise integral in Eq
~6.6!, to get

Z5E @Dq~ t !#J@q# expF2
1

4sTE dtusq̇1“qV~q!u2G .
~6.8!

One may simplify the Jacobian further, but the deta
depend on how one regularizes short times in the path i
gral. That is, there is sensitivity to what convention one u
for discretizing time in the path integral.@In contrast, the
original Langevin equation~6.4! is insensitive to the details
of short-time regularization.# If one makes the standar
choice of a time-symmetric discretization scheme, wherq̇
andq in the path integral are interpreted as

q̇5
q~ t i !2q~ t i 21!

Dt
, q5

q~ t i !1q~ t i 21!

2
, ~6.9!

then one may show that the Jacobian simplifies to@14,15#

J@q#5expF2
u~0!

s E dt¹q
2V~q!G ~6.10!

with the symmetric interpretation

u~0!5 1
2 ~6.11!

of the step functionu(t).
In field theory,q becomesA, andq derivatives become

functional derivatives. The path integral~6.8! becomes, in
the case at hand,

Z5E @DA#J@A# expF2
1

4sTE dtd3xusȦ1D3Bu2G ,
~6.12!

J@A#5expF2
u~0!

s E dtd3x
d

dAi
a~x!

~D3B! i
a~x!G

5expF2
u~0!

s
d (3)~0!E dtd3x

d

dAi
a ~D3B! i

aG .
~6.13!

It is easy enough to take the derivative, to get
3-7
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J@A#5exp@2s21d (3)~0! trD2#, ~6.14!

but it is unnecessary if one uses dimensional regularizat
In dimensional regularization,d (d)(0) vanishes~where I take
d532e to be the number of spatial dimensions!, and so

J@A#51 ~dimensional regularization!. ~6.15!

This is a feature ofany Langevin field equation that is loca
in space.

2. The path integral in other gauges

Knowing the result inA050 gauge, it is easy to guess th
corresponding path integralwithout gauge-fixing:4

Z5E @DA0#@DA#J@A#

3expF2
1

4sTE dtd3xusE1D3Bu2G . ~6.16!

This can be verified by now fixingA050 gauge in the usua
way, and obtaining Eq.~6.12!. The advantage of the gauge
invariant form is that one can now alternatively fix oth
gauges in the usual way, by introducing Faddeev-Po
ghostsc and c̄. For example, to fix Coulomb gauge,

Z5E @DA0#@DA#@Dc̄#@Dc#d ~“•A!J@A#

3expS 2E dtd3xLCoulombD , ~6.17!

LCoulomb5
1

4sT
@ u2sE1D3Bu21 c̄“•Dc#. ~6.18!

B. The k™m theory

There are two important differences between thek!m
Langevin equation~2.3! and the simplerk!g equation
~1.13!. The first is that thek!m equation is non-local, which
means that the Jacobian term in the path integral, analog
to Eq. ~6.14!, will not involve d (3)(0) and so will not trivi-
ally vanish in dimensional regularization. The second is t
the amplitude of the damping and the noise in thek!m
equation depends on the stateA of the system. As mentione
before, this means that the continuum Langevin equa
does not have a well-defined meaning. The Langevin eq
tion itself ~and not just the path integral description! is sen-
sitive to the ultraviolet and details of UV frequency regula
ization.

The fact that an effective theory is sensitive to details
ultraviolet regularization is not novel. Almost all effectiv
field theories require ultraviolet regularization, and it w
only the anomalous fact that thek!g effective theory~1.13!

4See the discussion surrounding Eq.~4.9! of Ref. @16#.
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happens to be ultravioletfinite5 that meant we did not need t
regularize it. As usual, one should simply pick a regulariz
tion scheme and then fix the regularized parameters of
effective theory so that it reproduces the infrared physics
whatever more fundamental theory underlies it. In Ref.@17#,
I have discussed this matching problem for general syst
of the form

s i j ~q! q̇ j52¹qi
V~q!1z i , ~6.19a!

^^z i~ t ! z j~ t8!&&52T s i j ~q! d~ t2t8!,
~6.19b!

in cases where it is known that the equilibrium distributi
for q is

Peq~q!5e2V(q)/T ~6.20!

in whatever approximation one is working in. This is use
in the present case because static equilibrium propertie
hot gauge theories are much simpler to analyze than dyna
cal ones, and indeed the equilibrium distribution inA050
gauge should be Eq.~6.20! with V the magnetic energy. In
Ref. @17#, I discuss how knowledge of the equilibrium dis
tribution ~6.20! forces the ambiguities inherent in the co
tinuum Langevin equations~6.19! to be resolved in a particu
lar way. I also showed that the corresponding path integ
formulation is

Z5E @Dq~ t !#expF2E dtL~ q̇,q!G , ~6.21!

L~ q̇,q!5
1

4T
~sq̇1“qV!Ás21~sq̇1“qV!1L1~q!,

~6.22!

L1~q!52
1

2
¹qi

@~s21! i j ¹qj
V#

1
T

4
¹qi

¹qj
~s21! i j 2

1

2
d~0! tr lns, ~6.23!

if the path integral is defined with symmetric time discre
zation~6.9!. d(0) above is short-hand ford(t50)5(Dt)21.
The first term in Eq.~6.22! is the obvious generalization o
the exponent in Eq.~6.8! from scalars to matrixs i j (q). The
remaining L1(q) term represents the appropriate Jacob
~more accurately,2 lnJ) and the terms necessary for the d
sired resolution of the ambiguities of the continuum Lang
vin equation~6.19!. One may easily verify that specializatio
to the cases i j (q)5sd i j , with s constant, reproduces th
earlier result~6.8! @up to an irrelevant constant normaliza
tion#.

In A050 gauge, we can now obtain the path integral
the gauge theory case by replacingq by A and derivatives by
functional derivatives. The resulting action density is

5For a discussion in the present context, see Ref.@7#.
3-8
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L5
1

4T
@s̄~D! Ȧ1D3B#Ts̄~D!21

3@s̄~D! Ȧ1D3B#1L1@A#, ~6.24!

which, except for theL1@A# term, is the natural generaliza
tion of thek!g action in Eq.~6.12!. TheL1@A# term, how-
ever, is ugly as sin. So much so, that it is unilluminating
write it down, other than to refer back to the discrete vers
~6.23!. I have been unable to find an attractive form f
L1@A#. Fortunately,L1@A# does not enter at all into certai
important applications of this formalism, as I will discu
shortly.

A gauge-unfixed version of the action~6.22! can be found
simply by finding a gauge-invariant action that becomes
~6.22! when fixed toA050 gauge. The result is

L5
1

4T
@2s̄~D! E1D3B#Ts̄~D!21

3@2s̄~D! E1D3B#1L1@A#. ~6.25!

This action may then be used to fix whatever gauge is
sired.

Note that L1@A#, though derived inA050 gauge, is
guage-invariant under general time-dependent gauge tr
formations. The derivation inA050 gauge implied that
L1@A# is invariant under time-independentgauge transfor-
mations. BecauseL1@A# does not involve any time deriva
tives ~and because I did not introduceA0 into this term!, it is
then automatically invariant under time-dependent trans
mations as well.

C. The nature of L 1†A‡

The coupling constantg is a convenient parameter fo
counting powers of the loop expansion. At high temperatu
the parameter which controls the effectiveness of the l
expansion is notg2 by itself, but it is at least proportional to
an explicit factor ofg2. For analysis of static equilibrium
quantities, for example, the loop expansion paramete
g2T/k ~once appropriate resummations have been im
mented! for momentak*g2T. The fact that physics is some
how treatable perturbatively fork@g2T ~after integrating out
degrees of freedom that decouple at various physical thr
olds! is a reflection of the fact that the size of gauge fie
fluctuations is perturbatively small for suchk. In Refs.
@11,12#, for example, Yaffe and I use the loop expansion
thev!k!m theory atk;g to compute corrections to colo
conductivity and hot electroweak baryon number violatio
The loop expansion is in that case an expansion ing2T/k
;@ ln(1/g)#21.

To understand at what order in the loop expansion in
actions in the Lagrangian might contribute, it is therefo
important to understand what explicit factors ofg are asso-
ciated with those interactions. Let us focus in particular
the ~horrible! terms ofL1@A#. First, note thatA only appears
in the combinationgA in s(D), sinceD5“1gA. So ex-
pandings(D) in powers ofg gives
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s~D!5s~“ !1O~gA!1O~g2A2!1•••, ~6.26!

and then similarly,

@s~D!#215@s~“ !#211O~gA!1O~g2A2!1•••,
~6.27!

where I am only keeping track of the explicit powers ofg
andA at each order. The terms in this expansion arenot local
in space.

One can now read off, for instance, that the gauge the
term corresponding to the¹qi

¹qj
(s21) i j term in Eq.~6.23!

for L1 must be schematically of the form

d2

dA2 s215O~g2!1O~g3A!1O~g4A2!1•••. ~6.28!

The O(g2) term is independent ofA and so can be dis
carded. There cannot actually be anO(g2A) term in the La-
grangian because there is no way for it to be a color sing
So the leading piece of thed2s21/dA2 term of L1@A# is
O(g4A2). The explicit factor ofg4 implies that it will be
suppressed by two powers of the loop expansion param
compared to theO(g0A2) terms in the action~6.25!, which
determine theA propagator.@And theA3 and so forth terms
are similarly suppressed compared to non-L1 A3 and so forth
terms in Eq.~6.25!.#

Similarly, the magnetic energy is

V5O~A2!1O~gA3!1O~g2A4!. ~6.29!

The possible terms arising from the¹q@s21¹qV# term in
Eq. ~6.23! are then of the form

d

dA Fs21
d

dA
VG5O~1!1O~gA!1O~g2A2!1•••.

~6.30!

Again, O(1) can be discarded, andO(gA) cannot appear in
the action, so the leading term ing must beO(g2A2). This is
suppressed by one power of the loop expansion param
compared to theO(g0A2) terms in the action~6.25!. The
analysis of the remaining term, lns, is similar.

The conclusion is that the interactions amongA generated
by L1@A# will all be suppressed by at least one power of t
loop expansion parameter, compared to those appearin
the other terms of Eq.~6.25!. In Ref. @12#, Yaffe and I show
that this suppression is enough to permit a next-to-lead
log order analysis of the color conductivity and the hot ele
troweak baryon number violation rate without requiring u
of an explicit form forL1@A#.

A word of caution about the above analysis is require
however. The correspondence between explicit powers og2

and the expansion parameterg2T/k only works if one has an
effective theory that properly integrates out all of the phys
above the scale you are interested in. For example, if
does perturbation theory in the originalk!T hard-thermal
loop effective theory~1.4!, the loop expansion will break
down atk;g: the loop expansion parameter will beO(1)
3-9
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instead of orderg2T/k;g2T/g;@ ln(1/g)#21. One must in-
stead make the loop expansion in thek!m effective theory,
which incorporates the effects of collisions into the ba
propagators and vertices. As long as the correct effec
D

03600
e

theory is used, thereshouldbe no problem. However, for the
sake of caution, it would be useful to have a much mo
explicit analysis of the suppression of theL1@A# terms than I
have been able to give.
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~1989!; S. Mrówczyński, Phys. Rev. D39, 1940 ~1989!; and
references therein.

@4# J. Blaizot and I. Iancu, Nucl. Phys.B421, 565 ~1994!.
@5# P. Arnold, D. Son, and L. Yaffe, Phys. Rev. D55, 6264

~1997!.
@6# H. Weldon, Phys. Rev. D26, 1394 ~1982!; U. Heinz, Ann.

Phys.~N.Y.! 161, 48 ~1985!; 168, 148 ~1986!.
@7# P. Arnold, D. Son, and L. Yaffe, Phys. Rev. D59, 105020

~1999!.
@8# R. Pisarski, Phys. Rev. Lett.63, 1129~1989!; Phys. Rev. D47,

5589 ~1993!.
@9# D. Litim and C. Manuel, Phys. Rev. D61, 125004~2000!.
@10# G. Moore, Nucl. Phys.B568, 367 ~2000!.
@11# P. Arnold and L. Yaffe, ‘‘Non-perturbative dynamics of ho

non-Abelian gauge fields: Beyond leading log,
hep-ph/9912305.

@12# P. Arnold and L. Yaffe, ‘‘High temperature color conductivit
at next-to-leading log order,’’ hep-ph/9912306.

@13# P. Arnold, D. Son, and L. Yaffe, Phys. Rev. D60, 025007
~1999!.

@14# J. Zinn-Justin,Quantum Field Theory and Critical Phenom
ena, 2nd ed.~Oxford University Press, New York, 1993!.

@15# F. Langouche, D. Roekaerts, and E. Tirapegui, Physica A95,
252 ~1979!; H. Kawara, M. Namiki, H. Okamoto, and S
Tanaka, Prog. Theor. Phys.84, 749 ~1990!; N. Komoike, ibid.
86, 575 ~1991!.

@16# H. Chan and M. Halpern, Phys. Rev. D33, 540 ~1986!.
@17# P. Arnold, Phys. Rev. E61, 6091~2000!.
3-10


