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A proper sequence of effective theories, corresponding to larger and larger distance scales, is crucial for
analyzing real-time equilibrium physics in hot non-Abelian plasmas. For the study of color dynémics
which | mean physics involving long wavelength gauge fluctuajioas important stepping stone in the
sequence of effective theories is to have a good effective theory for dynamics with wave riwddebelow
the Debye screening mass. | review how such dynamics is associated with inverse time sdaléshen give
a compact way to package, in the<k limit, Bodeker's description ok<m physics, which was in terms of
Vlasov equations with collision terms. Finally, | show how the resulting effective theory can be reformulated
as a path integral.

PACS numbd(s): 11.10.Wx

[. INTRODUCTION covariant, linearized Boltzmann equation for then pro-
duces the leading-order effective theanys a density matrix
The color fluctuations of very hot, weakly coupled, non-in color space, and the piece of it that's relevant to long-
Abelian plasmas are non-perturbatively large at distancélistance color dynamidst leading orderis the adjoint color
scalesR of order @2T) !. Their dynamics is of particular piece. It is also convenient and conventional to integrate this
interest because it is responsible for the large rate of baryoadjoint piece over the magnitudp| of momentum, replac-
number violation in hot electroweak theory, and so lies at theng n(x,p,t) by an adjoint fieldW(x,v,t), wherev=p. The

heart of electroweak scenarios for baryogenesis. “Hot” hergesulting equations, iV is given a convenient overall nor-
means hot enough téa) be ultra-relativistic, (b) ignore  malization, arg4]
chemical potentials, an@) be in the hot, symmetric phase if

there is a Higgs mechanism. It is now knoWh| that the (Di+v-D)W—v-E=0, (1.3a
time scale associated with non-perturbative color dynamics _ 5
is t~[g*T In(1/g)] %, which is long in the sense thaR D, F=jt=m(v*W),, (1.3b

(in the weakly coupled limjt Equivalently, the spatial mo-

mentum and the frequency scales associated with nor)(yhere m~gT is again the leading-order Debye mass,

perturbative color dynamics are (---)y denotes angular averaging over the directiorand
v#*=(1yv). Formally solving the Boltzmann equation fav
k~g?T, w~g*TIn(1/g). (1.2) and plugging the result into the Maxwell equation, one ob-

tains the hard-thermal loop equation of motion for the soft
This momentum scalé is small compared to the Debye 92uge field, which is

mass D F#=jr=mXv*Dy+v-D) WV-E),. (1.4

m~gT. (1.2 This equation contains, among other things, the physics of

Debye screening, which screens static electric fields over dis-
The goal of this paper is to present an effective theory fokances of order .

color dynamics on scales<k<m, to formulate that effec- A qualitatively important poinf5] can be extracted from
tive theory solely in terms of gauge fields,(t,x), and to  Eq. (1.4): k<m physics is dominated by frequencies<k.
write the effective theory in path integral form. For the sake of quickly reviewing this point here, focus for

It has been known for some tim@] how to write @  simplicity on the linear terms on the right-hand side of Eq.
leading-order effective theory for color dynamics at the scalg1.4), focus on theiro<k behavior, and let us check self-
k~m~gT, where leading-order means that corrections areonsistently that the dominant frequency falls in the<k
suppressed by powers af. The zero-temperature non- regime. Focus in particular on the transverse modes of the
Abelian Maxwell equations are modified by what are knowngauge field, which are not Debye screenedkerm. In the
as “hard thermal loops,” which incorporate the effects of 4, <k limit, one can show that the spatial currgrgiven by

interactions of the sofk~gT degrees of freedom with hard the right-hand side of Eq(1.4) becomes, in the transverse
k~T thermal excitations in the plasma. There is a standardector,

way of writing this effective theory which has a simple

physical interpretatiofi3]. One treats the soft fields classi- , . .

cally, and replaces the hard excitations by classical distribu- j7=—4 Er + (higher order inA). (1.5
tion functionsn(x,p,t) which describe the density of hard

excitations at positiorx with momentump. Writing down  Fixing Ag=0 gauge, and working in Fourier space, Am-
Maxwell's equations, together with an appropriately gaugepere’s Law then becomes
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mm? the inverse mean free path for color-randomizing collisions
(—w?+k?)Ar= —ak_|@Ar +(higher order inA). of the hard particles that, microscopically, make up the color
(1.6) distribution W.
The collision term in the Boltzmann equation damps the
The coefficient ofA; on the right-hand side is simply the system towards equilibrium. In order to describe the physics
w<k limit of the transverse hard thermal loop self-energyof thermal fluctuations around equilibrium, one must also
[6]. For o<k, Eq.(1.6) becomes include a thermal noise term, which is tifeshown in Eq.
(1.93. This equation is therefore an example of a Langevin
equation. Bdeker derived the noise term, but one can also
argue for it on general principles based on the fluctuation-
dissipation theoren(for instance, along the lines of Réf]
in orders of magnitude, if interactions are ignored. The charor [9]). Bodeker found Gaussian white noise with correlation
acteristic frequency is then of order

m2
K?A~ s i wAT (1.7

2T
3 {(E(v.x,t) (v X t))=—5 8C(v,Vv") 6253 (x—x")
||~ o (ignoring interactions (1.8 m
X 8(t—t'). (1.11)

and we can now verify that this frequency indeed satisfies the L i
assumed relationship<k when k<m. For this reason, in In writing formulas later on, it will be convenient to suppress
discussing effective theories far<m, it is relevant and u’se- indices ands functions and write correlations like the above

ful to also specialize tas<<k. Interactions modify the esti- N the short-hand notation

mate (1.8) when k<y [1,7], where y~g?TIn(1/g) is the oT

inverse mean free time between color randomizing colli- <<§g>>=—25(:_ (1.12
sions, but the result that the characteristic frequency scale m
is small compared t& is unaffected.

The theory(1.4) represents an effective theory for mo-
mentum scales small comparedToBodeker has discussed
what happens if one goes further and integrates out the phy
ics down to some scalg<<m. The hard particles which,
microscopically, make up the color distributioécan have
color-randomizing collisions by-channel gluon exchange. DXB=c¢E+{ (1.133
Such collisions are dominated by momentum exchaiggas ’
the rangey®T<q=m. Integrating out part of this momentum (3%, o(x t))=20T &; 8*P5E(x—x")o(t—t")
range generates an explicit collision term in the Boltzmann **>' > 212 4 '

The combination of Eqg1.9) and(1.11) make up Bade-
ker's effective theory fok<m. For Badeker, this version of
gje theory was merely a stepping stone to deriving an even
simpler and more infrared effective theory for<y, where
W was eliminated. That theory is of the form

equation, replacing Eq1.33 by (1.13b
. It has been used as the basis for numerical simulations to
(Dy+Vv-D)W—v-E=—-6C W+, (1.99  obtain the leading-log result for the hot electroweak baryon
number violation rat¢10].
D, F#"=jr=m* (v W),. (1.9p Now return to the previouk<m effective theory(1.9).

~ . The purpose of this paper is to present a cleaner, tidier ver-
6C is a linearized collision operator. The magnitudeS@fis  sion of this effective theory, more suitable for going beyond
logarithmically sensitive to the separation of the scademd  leading-log order in calculations. In particular, | shél)
m, and Baleker has calculatedC at leading-order in that take thew<k limit, discussed earlief2) show how to elimi-
logarithm to be the localin x) operator defined by nateW from the result to obtain a single Langevin equation
for A, somewhat analogous to E@L.4) but with damping
5C W(V)=(S5C(V,v') W(V)),/, (1.10a and noise, and3) show how to rewrite this Langevin equa-
tion as a path integral.
4 (v-v')? Part of the reason for wanting to take the<k limit is a
S2(Vv—V')— — ——|, (1.109 pragmatic one. In field theory calculations, one tends to think
T N1=(v-V') of the philosophy of effective theories in the language of the
Wilsonian renormalization group—"integrating out modes
with k= w«.” But a Wilson-style approach is generally im-
practical for perturbative calculations beyond lowest order, if
one wants to set to be of order some characteristic scale of
Here ~ denotes equality at leading-log order, meaning thathe problem. In practice, one usuakgepsmodes withk
corrections are down byn(nm/u)] %, and5%2 is a §-function > and instead uses renormalization subtractions to achieve
on the unit sphere, normalized so taf2(v—v’)),=1. To  an equivalent result. Typically, dimensional regularization is
leading log ordery(u) is what's known as the hard thermal used to regularize the ultraviolet. In an effective theory for
gluon damping rat¢8] if one setsu~g?T. This represents scalesk<u, it does not matter much what the physics is in

OC(v,V' )= y(u)

)’(M)*CA‘IT“"(g . (1.1009
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the ultraviolet k>u)—one adjusts the parameters of the Il. PREVIEW OF RESULTS
effective theory to correct for the difference between the UV
behavior of the effective theory and the UV behavior of the
real theory. So, for instance, the bai@ in Eq. (1.9 should
be set to thalifferencebetween the collisions generated in
the real theory due to gluon exchange wath ., and those

I will recap Baodeker's originalk<m effective theory
(1.3), now splitting Maxwell's equations into Gauss’ law and
Ampere’s law:

generated in the effective theory due to gluon exchange with (De+v-D)W=v-E=—=5CW+¢, (2.13

g> w. The difficulty with Badeker'sk<m effective theory 5

as it stands is that, if one does not simply throw away the D-E=mXW), (2.1b
> ich is diffi i -

k> u modes(which is difficult to do by hand in a gauge D\E+ DX B=mAvW). (2.10

invariant manner then the equationél.9) in fact reproduce
all of the complicateck~m behavior of the original hard
thermal loop theory(1.4): plasmons, the Debye screening
threshold, etc. Because of this, theradsdifference between

My result for appropriate equations in the<k limit, dis-
cussed in Sec. lll, will be

the g>u contribution to C in the two theories, and one v-DW—v-E=—8CW+¢, (2.2a
should set the baréC in Eq. (1.93 to zero, returning right
back to the original hard thermal loop descriptidn9). For 0=m*(W), (2.2b
the leading-log calculations of ‘Bleker, none of this
mattered—one could think of Wilsonian-style cutoffs kat DX B=m*(VW). (2.29

= u, and all the associated difficulties are sub-leading order. )
To cleanly discuss effects beyond leading-log order, how!n Sec. IV, | discuss the form of Gauss’ la@.2h and
ever, a more systematic approach to them effective Amp.erg’s law(2.29 if the Boltzmann equatiof2.23 is used
theory is required, and it behooves us to reformulate thd €liminateW. In Sec. V, | then go on to show how Gauss’
effective theory in a form where its UV behavior is as simple/@W and Ampere’s law, together with the noise correlation
as possible and has no structure Kef . (1.1, can be combined into a simple form analogous to
One of the other goals of this paper will be to reformulateEd- (1.13,
the k<m effective theory as a path integrgAs a warm-up,
| will also review how to do the same for the simplegy
effective theory of Eq(1.13.] One reason this is useful is _
that path integrals provide, for many people, a more familiar {(&&)=2T o(D), (2.3b
starting point for calculations than do Langevin equations. _
Another reason is that one can fix gauges for perturbativévhere the operatos(D) will be defined later. This is an
calculations by the usual Faddeev-Popov procedure. Théxample of a Langevin equation with “multiplicative
theory (1.13), for instance, was derived by Beker specifi- hoise,” which simply means that the noise amplitu@esb)
cally in A,=0 gauge. By converting th&,=0 gauge result depends on the dynamical variabde Such equations are
into a path integral and then generalizing the result to dotorious for being ambiguous and sensitive to the details of
gauge-invariant form, it will be easy to see how to CorrecﬂyU'traViO'et regularization. In Sec. VI, | will address these
account for other, non-ghost-free gauge fixings, such as Coussues, and show how to formulate the theory as a gauge-
lomb gauge. Such gauges can be very convenient for calcivariant path integral. The path integral has the form
lations.
The advantages of the formaligm discussed in this paper Z:f [DAdx,t)][DA(x,t)]ex;{ _f dtd3xL), (2.4)
are put into use by me and Yaffe in Ref&1,12, where we
compute the next-to-leading-log corrections todBker's
far-infrared effective theory(1.13, and use it to analyze

DXB=0o(D) E+¢, (2.33

. : : : =——[-0o(D)E+DxB]"¢(D)"*
next-to-leading-logarithm corrections to the color conductiv- 4T[ (D) E+DxB] o(D)
ity and the hot electroweak baryon number violation rate. _
Before continuing, | should be explicit about one techni- X[—=o(D) E+ DXB]+L4[A]. (2.9

cal point. Most of the various effective theories discussed in _

this paper are not ultraviolet finite and require regularizationvery roughly speaking, the Gaussian integral-inr(D) E
and renormalizatiofthe one exception being Beker's final  +DXB implements a Gaussian probability distribution for
effective theory(1.13]. | shall implicitly assume in this pa- —o(D) E+DXB, and so implements Eq2.3). The term
per that divergences associated with small spatial scales havg[ A] is a complicated factor related to a Jacobian and to
somehow been appropriately regulated. For instance, suaisolving the aforementioned ambiguities, and it will be dis-
divergences are regulated in R¢f.2] using dimensional cussed later.

regularization. | will, however, later focus explicitly on regu-

larization issues associated W_ith .s.mall .time scales, which ll. THE <k LIMIT OF THE W EQUATIONS
correspond to well-known ambiguities with certain types of

Langevin equations and which may not be familiar to many The w<k limit of the Boltzmann equatio2.13 is easy
readers. to understand: we can ignore tBgW term compared to the
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v-DW term. The resulting equatiof2.23 is no longer an  The first term isO(w*A) and the secon®(k*A). This sug-
evolution equation folV; instead W is determined solely by gests that one may drop the first term in comparison to the

the instantaneous values Bfand &. Formally, second—at least in the transverse SeCt®X8=DXD
X A is purely transversg.The result is the equatio(®2.20
W=é(v~ E+¢) (3.1a presented earlier. For this equation to be consistent, it had
better be that the right-hand side is purely transverse as well
with (in the w<<k limit). Indeed,
G=(v-D+6C) 2. (3.1b D- (VW)= (v-DW)=(v-E+ &) =(&), (3.7)

Let us now analyze Gauss’ lai#.1b) using this smalko.  where | have used the<k Boltzmann equatioii2.2a. The
approximation tow.: v-average ¢), of the noise vanishes for the following rea-

. son[1]. Since¢ is Gaussian noise, so {g),. But
D-E=m?(G(v-E+&)). (3.2

Again, the notation{ - - -) indicates averaging oves-space,
but one must carefully keep in mind thaC and G are
operators inv-space. This notation is that of R¢T], and the so (¢) is simply zero. Then Eq(3.7) implies that(vW) is
reader may find a thorough discussion of it in the introducindeed purely transverse in the<k effective theory.

tion of Ref.[12]. It is now useful to spliE into longitudinal
and transverse piecé&§ andE+ [13], defined by the longi-
tudinal and transverse projection operators

{((E)(E) W= (ENV) ENV)) My SC(V,V )Yy =0,
(3.8

IV. TWO EQUATIONS FOR A

There is a conceptual trap lurking in tle<k equations

P'=D'D~?DJ, (3.38 (2.2 that is easy to fall into. Equatiof2.2b) appears to say
— . that j°=m?(W) vanishes in thew—0 limit. And so, by
Pri=a8-P.", (33D Gauss’ law, thaD-E = 0. And one might take that to mean

) . o _ that longitudinal electric fieldg,_ are negligible compared to
where_llandj run over spatial indices an® " means  rangyverse field€, in the w<k limit. This is incorrect
(D-D) " The order of magnitude of the left-hand side of gqation(2.2) merely reflects the fact that thz- E term in
Eq. (3.2 is thenO(KE,). The right-hand side of Eq3.2  Eq.(3.2) is negligible compared to the individual terms on

has, among other things, a temt(Gv-E.) involving E_. the right-hand side of that equation—there is no presumption
Using the projection operatdB.3a and a frequently useful about how smallE, is relative toEy. It is perhaps less
trick [12], this term can be rewritten as confusing to eliminatéV altogether, and replace EgR.2)

A . by the two equations
m*(Gv-E )=m*Gv-D)D ?D-E
— 2 A~ .
=m%G(v-D+8C))D2D-E=m2D 2D-E. 0=m%(G(v-E+¢)), (4.13
(34 DX B=mA(vG(v-E+£)). (4.1D

The middle equality follows becaus¥ has the property of The form (2.2) in terms of W has the advantage of having a
annihilating functions that do not depend\gfand so, as @ more direct correspondence with the form of the original
general rule,(---5C)=0 and (6C---)=0. (See Refs. equationg1.9). | will want to refer to theW-eliminated form
[1,13,13 for discussions of thisFrom Eq.(3.4), we see that  (4.1) in the next section, however, and so it is useful to
the m*(Gv-E,) term isO(m?k 2D-E). That's bigger than simplify the noise terms in these equations. In particular, the
theD- E term on the left-hand side of E¢3.2) by a factor of  terms m*(G¢) and m*(vG¢) are proportional to Gaussian
m?/k?, and m?*/k? is large for the modes whose physics | noise¢ and so are themselves Gaussian noise, and Gaussian
wish to correctly describek(<m). So it is permissible, when noise can be completely specified just by specifying its cor-
implementing the constraints of Gauss’ law, to ignore therelator. So, rewrite the two equatiof4.2) as

contribution of theD- E on the left-hand side, leaving

2 C(y.
0=m*(G(v-E+£)). (3.5 1Consider, for example, the caselok y, so that Eq(1.13 gives

an effective description of the physics, bki-g®T, so that the
physics is still perturbative. And consider, for example, the fre-
quency scaleo~k?/o. Then Eq.(1.13 gives the order of magni-
tude relationcE~ ¢, which means that all polarizations Bfare the

Rewriting back in terms oW, this is the w<k equation
(2.2b presented earlier.
Finally, consider Ampere’s law2.19. For the moment,

think about it inA,=0 gauge, where it becomes same order of magnitude. See R@f3] for a detailed discussion of
2 5 why the effective theory1.13 applies to the longitudinal as well as
dfA+DXDXA=m(VW). (3.6 transverse sector.
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0=m*Gv)-E+ 7, (4.29
DXB=mXVvGV)-E+ &, (4.2b

where
(nm)=m¥ GG T)=2TmH(G CGT),  (4.33

(&t )= VB((E6)NG V) =2TIA(VG 5C & Tv).
(4.3b

The right-hand sides implicitly have factors @{t—t’),
which | have suppressed. The transposéadndicates trans-
position inx-space, color space, amdspace.D; is the ad-
joint representation covariant derivative and satisbg's=
—D,. The linearized collision operataiC is symmetric in
v-space since, by rotation invariance, it can only depemd

v-v'. [See Eq(1.10b, for example, for the explicit version

at leading log ordet.So
G'=(-v-D+6C) % (4.4
Now note that

GsCGT=3G[(GT) +(G) GT=3(G+G),

(4.5
SO

(nn)=Tm¥G+GT), (4.6

(& )=TmAV(G+GT)v). (4.7)

Taking v— —V in the v average shows that th® and G "
terms give the same result, so that

{(mm)=2Tm?(G), (4.89
{(&rdr)=2Tm? (VGv). (4.89)

Finally, we can verify thaty and {&; are independent:
(nr)=TmX(G+GTv)=0, (4.9

where the last equality follows by— —v in the term involv-

ing GT. The noise correlation@.8), combined with the two
equationg4.2) for A, give a complete description of the
<k<m effective theory.

V. ONE EQUATION FOR A

It is possible to eliminat&V and write a single equation

for A that embodies all of E¢2.2) or Eq. (4.2). Define the

PHYSICAL REVIEW D 62 036003

projection operator150 to be an operator irv-space that
projects out functions that are independent/pthat is,

Pof (V) =(f(V)). (5.0

The trick is to take the % P, projection of Eq(2.2a, and to

note thatP, vanishes orv-E and on¢ (becaus€¢)=0, as
explained earlier So

(1—Pg)(v-D+ 5C)W=V-E+¢. (5.2
Now note that Eq(2.2b tells us thatP,;W=0, and so
(1-Pg)(v-D+8C)(1-Py)W=V-E+& (5.3
Then we can solve fow as
W=G,(v-E+ &), (5.49

G1=[(1—Pg)(v-D+5C)(1—Pgy)] 4, (5.4b

where the inverse is understood to be taken in the space

projected by - P,. An alternative way to obtain the same
inverse is

G,= lim (v-D+8C+ APy L. (5.49

A—oo

Equation(5.4) appears different from the solutidB.1) used
earlier for W. Indeed itis different for arbitraryE, but it
produces the sam@/ whenE is such that thes<k Gauss’
law (2.2b is satisfied. The advantage of the present form is
that it may be used to derive a single equation containing all
of the dynamics of the three equatiai@s2). To proceed, use
Eq. (5.4) in Ampere’s law(2.20 to get Eq.(2.33,

DxB=0(D) E+¢, (5.9
where (D) is a matrix in vector-index space,
7i;(D)=mXv;G1v;)= lim m¥(v;(v-D+ 6C+APg) ~v;),

o (5.6
and ¢ is Gaussian noise given by

{=m?(vG1¢)= lim m*(v(v-D+8C+ APg) ~1¢).

A—o

(5.7)

| will show in a moment that Eq5.5 subsumes the three
equations(2.2), but first | will derive the correlation of the

2This argument assumes that collisions do not depend on spin, dpaussian noisé. Based on the analogy of E(.5 with the

that spin has been averaged over. TiegT collisions that are of

far-infrared effective theoryl.13, one might expect that the

interest to this problem are indeed insensitive to spin at leadingorrelation is Eq(2.3b. To verify it, start from the definition

order in coupling.

(5.7) of ¢ which gives
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(GigN=m"(viGo((£ENG] v))=2TnP (v;G, 6C G v)).
(5.9

PHYSICAL REVIEW D 62 036003

0=(G)[D (D) E+D-{]. (5.16

Using Eq.(5.13),

By arguments that parallel those used to derive the noise

correlation (4.8b of ¢ from the analogous starting point
(4.3b in the previous section, one obtains

(&igN=2Tm? (v;G1v;)=2T o(D). (5.9

I will now show that the simple equations | have derived,

DXxB=0(D) E+¢, (5.103

(&)=2T o(D),

provide a complete description of the<k<m effective
theory originally described by Ed2.2) and the correlation
(1.17). Specifically, I will show how to recover the two in-
dividual equationg4.2) of the last section for Gauss’ law
and Ampere’s law, which were the result of trivially elimi-
natingW from Eq.(2.2). It is convenient to first establish a

relation between the (2P,) projectedW propagatoiG; of
Egs.(5.4b and(5.49 and the original unprojected propaga-
tor of Eq.(3.1b. The relation is

(5.10b

8,=6—BPy(6) 16, (5.11

which can also be thought of as the rule

(++(G=G)+)==(---G)(G) HG--), (5.12
e.g.

o(D)=mXvGyv)=m’[(VGV) — (VG)(G) " {(Gv)].
(5.

It is easy to verify Eq(5.11) by first checking that it lives in
the space projected by-1P,
Po[G—GPy(G) 1G]=P,G—Py(G)G) G

=P,G—PyG=0 (5.14

(and similarly] G+ GPo(G) *G]P,=0), and then checking
explicitly that it is the desired inverse:
[G—GPy(G) 1G1G; *
=(1=Po)[G=GPy(G)!GIG™H(1—Py)
=(1-Po)[1-GPy(G) *](1~Po)
=(1-Py). (5.15
Now | will show that the gauge field Langevin equation

(5.10a implies Gauss' law(4.23 by dotting(G)D into both
sides of Eq.{(5.103:

(G)D o(D) E=m*(G)[(v-DGV)—(v-DGYG) HGV)E.
(5.17)

We can simplify using the trick discussed earlier,

(v-DG--)=((v-D+8C)G---)=(-++),  (5.18
so that
(v-DGV)=(v)=0, (5.193
(v-DG)=1. (5.199
Equation(5.17) for the o term then becomes
(G)D (D) E= —m*Gv)-E. (5.20
So Eq.(5.16 becomes
0=m*Gv)-E—(G)D- ¢ (5.21)

Compare to Gauss’ lav4.2g9. The last term is Gaussian
noise, and all that matters for the purpose of reproducing
Gauss’ law(4.23 is to check thaty’=—(G)D- ¢ has the
same noise correlatio®.8g as » of the last section. First
put together Eqs(5.11) and(5.18 to get

(v-DGy- ) =([1—(G) 1G] -+). (5.22

Then, using the correlation(5.100h),

(n' 7' )=(G)D-((&)-D(G")
—2Tm*(G)(v-DG,v-D)(G)

=2Tm*(Gv-DY(G)
=2TmXG)=((nn))-

Alternatively, one could go back to the expressibrv) for £
in terms of ¢, and show directly thayy’=—(G)D-{ is the
same as they=m?(G¢).

Having obtained Gauss’ law, we can now check that the
single equation5.10g also enforces Ampere’s law.2h).

Expand; using Eq.(5.13, so that Eq(5.109 becomes

(5.23

DXB=m?vGv)-E-m*(vG){G) HGv)-E+¢
=mXvGv)-E+ &, (5.24
where the last equality uses Gauss’ |Iem21) and defines

&G=-(vG)D-¢L (5.29
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One may verify that the noisé& is equivalent to the nois& 1

(4.80 of the previous section. It is worth mentioning tht Z:J [Dg‘(t)]ex;{ - mj dt|§(t)|2“ [Da(t)]

is transverse - &+=0), but it is not simply the transverse _

projectionP+¢ of &. X olaq+VqV(q)—<£1J[al, (6.6)

where theé function is functional, and the corresponding

VI. PATH INTEGRALS AND AMBIGUITIES L . .
Jacobian is given by a functional determinant

A. A warmup: the k<y theory

d .
1. The path integral in A=0 gauge J[q]Edetj(d—q[(rqurqu V(q)—g’])
To warm up to talking about path integral formulations I

for the w<k<m Langevin equation2.33, | will start by — et E
discussing path integrals for the simpler, more infrared effec- det;| o4 dt+tiqu MCUE 6.7
tive theory described by Eq1.13 for o<k<<y. In A;=0
gauge, Now use thes-function to perform the noise integral in Eq.
(6.6), to get
oA=—DXB+{(, (6.13 .
z:f[p [ ]exp{—— dt|oq+ V,V( )2}.
(&)=20T. (6.10 AOPLalex = g7 | drat VoV (a)

(6.8

In this gauge, the above Langevin equation has a nice physi-

cal interpretation, because it can be rewritten as One may simplify the Jacobian further, but the details

depend on how one regularizes short times in the path inte-
S gral. That is, there is sensitivity to what convention one uses
oA=— —V[A]+¢, (6.2  for discretizing time in the path integrdlin contrast, the

oA original Langevin equatioi6.4) is insensitive to the details
of short-time regularizatiof.|If one makes the standard

choice of a time-symmetric discretization scheme, whgre
andq in the path integral are interpreted as

where

V[A]zf d®x3B2.B? (6.3
. ti)—q(ti_ t)+q(t;_

. - - - - . q: q( |) Ac:( i 1), q= Q( |) 20|( 1 1), (69)

is the magnetic energy. This means the Langevin equation is

just an infinite degree of freedom version of the kinematics . . .
Jof a highly dampegd particle in a potenti(q): then one may show that the Jacobian simplifiefli 15

: d J[q]=exp[ - @f dtVZV(q)} (6.10
UQi=—d—qV(Q)+§i, (6.4a o a '
1
with the symmetric interpretation
(&) §())=20Ta; o(t—t"). (6.4b
6(0)=3 (6.1
It is well known how to rewrite such equations, and their
field theory counterparts, as path integratsyt | will briefly  of the step functiorg(t).
review the steps here. Keep to the notatiér) for the mo- In field theory,q becomesA, andq derivatives become
ment, and first consider an integral over the distribution forfunctional derivatives. The path integré8.8) becomes, in
the Gaussian noise: the case at hand,
Z= | [Dt)]ex I dt|g(t)]? (6.5 Z=J [DA]J[A] ex I dtd®x|cA+ DX B|?
o 40T ' ' 40T '
(6.12
Now insert a factor of one in the form of the equation of
motion (6.49: 0(0) 3 1)
JAl=exg — — [ dtd®x (DX B)&(x)
- o SA(X)
3For a review, see, for example, Chaps. 4 and 17 of Ref]. 0(0) 3 3 d a
In that reference, the determinant in H.7) is implemented by =exg — 75( )(O)J dtd XdA-a(DX B)i|-
ghostjelds(which are_unrelated to gauge fixingThat is, J[q] ! 6.13
:f[Db][Db]exp{—fdth(aﬁijat+tiqu V(q))b;] where | have ’
labeled the ghosts andb. It is easy enough to take the derivative, to get
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JAl=exd — o 15®)(0) trD?], (6.14 happens to be ultravioldinite® that meant we did not need to
regularize it. As usual, one should simply pick a regulariza-
but it is unnecessary if one uses dimensional regularizatiortion scheme and then fix the regularized parameters of the
In dimensional regularizatios¥®(0) vanishegwhere | take effective theory so that it reproduces the infrared physics of
d=3- € to be the number of spatial dimensipnand so whatever more fundamental theory underlies it. In RET],

) ) o | have discussed this matching problem for general systems
JIA]=1 (dimensional regularization (6.15  of the form

Thls is a feature ofny Langevin field equation that is local i () d,: —tiV(q)+ 4 (6.193
in space.
2. The path integral in other gauges (&) &(t"))=2T oy(q) a(t—t"), (6.198
Knowing the result ilA,=0 gauge, it is easy to guess the '
corresponding path integralithout gauge-fixing® in cases where it is known that the equilibrium distribution
for q is
Z= f [DAo][DA]J[A] Peq(q):e_v(q)/T (62@

in whatever approximation one is working in. This is useful
in the present case because static equilibrium properties of
hot gauge theories are much simpler to analyze than dynami-
This can be verified by now fixingg=0 gauge in the usual cal ones, and indeed the equilibrium distributionAg=0

way, and obtaining Eq6.12. The advantage of the gauge- gauge should be Eq6.20 with V the magnetic energy. In
invariant form is that one can now alternatively fix other Ref.[17], | discuss how knowledge of the equilibrium dis-
gauges in the usual way, by introducing Faddeev-Popotribution (6.20 forces the ambiguities inherent in the con-
ghostsc andE For examp|e, to fix Coulomb gauge, tinuum LangeVin equatior(ﬁ.lg) to be resolved in a partiCU'

lar way. | also showed that the corresponding path integral
formulation is

1
xexp{——f dtd®x|cE+DxB|?|. (6.16
40T

z=f [ DAL PA]DC][Dc]S8(V-A)J[A]

z:J [Dq(t)]ex;{—j dtL(q,q)}, (6.22)
XeXF<_J dtd3XLC0u|0mb>1 (617)
. 1 . .
1 , = L(q,q)=ﬁ(0q+VqV)T0*1(0q+VqV)+Ll(q),
LCOU|Omb=m[|—O'E+ DX BJ|“+cV-Dc]. (6.18 6.22
B. The k<m theory Ll(q): _ %ti[(ail)ijvqjv]

There are two important differences between kxem
Langevin equation(2.3) and the simplerk<y equation T 1
(1.13. The first is that thé<m equation is non-local, which + Ztiqu(Gfl)ij —58(0)trina, (6.23
means that the Jacobian term in the path integral, analogous
to Eq. (6.14), will not involve 6©)(0) and so will not trivi- it the path integral is defined with symmetric time discreti-
ally vanish in dimensional regularization. The second is thagation (6.9). §(0) above is short-hand faf(t=0)=(At) L.
the amplitude of the damping and the noise in ®'m  The first term in Eq(6.22 is the obvious generalization of
equation depends on the stétef the system. As mentioned  the exponent in Eq6.8) from scalaro to matrixo;(q). The
before, this means that the continuum Langevin equatioRemainingL,(q) term represents the appropriate Jacobian
does not have a well-defined meaning. The Langevin equamore accurately;-InJ) and the terms necessary for the de-
tion itself (and not just the path integral descriptida sen-  sjreq resolution of the ambiguities of the continuum Lange-
sitive to the ultraviolet and details of UV frequency regular-yin equation(6.19. One may easily verify that specialization

ization. _ _ - __to the casevj;(q)=0d;j, with o constant, reproduces the
The fact that an effective theory is sensitive to details ofgaylier result(6.8) [up to an irrelevant constant normaliza-
ultraviolet regularization is not novel. Almost all effective {jopn].

field theories require ultraviolet regularization, and it was |, A,=0 gauge, we can now obtain the path integral for
only the anomalous fact that ttke< y effective theory(1.13  ihe gauge theory case by replacipy A and derivatives by
functional derivatives. The resulting action density is

4See the discussion surrounding £4.9) of Ref.[16]. SFor a discussion in the present context, see R@f.
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- . _ = A)+O(g?A?)+---, (6.2
L:%[U(D)MDXB]TU(D)_l o(D)=0(V)+O(gA) +O(g°A%) + (6.26

and then similarly,
X[o(D) A+DXB]+L,[A], 6.2
Lt JrhadAl ©24 [0(D)] *=[o(V)] +O(gA) + O(g®A%) + - -,
which, except for the.;[ A] term, is the natural generaliza- (6.27)
tion of thek<<y action in £q.(6.12. TheL,[A] term, how- where | am only keeping track of the explicit powers gf

ever, is ugly as sin. So much so, that it is unilluminating to L .
write it down, other than to refer back to the discrete versionandA at each order. The terms in this expansionrartocal

. . In space.
(6.23. | have been unable to find an attractive form for .
L4[A]. Fortunately,L ;[ A] does not enter at all into certain One can now read off, for instance, that the gauge theory

. 71 . .
important applications of this formalism, as | will discuss term corresponding to thﬁquqj(U )ij term in Eq.(6.23

shortly. for L; must be schematically of the form
A gauge-unfixed version of the acti©®6.22 can be found 5

simply by finding a gauge-invariant action that becomes Eq. o 1=0(a2)+ O(aA) + O(q*A2) + . . .. (6.2

(6.22 when fixed toAy=0 gauge. The result is 5A27 (99 +0(g°A) (G°A%) - (6.29
1 S The O(g?) term is independent oA and so can be dis-

L= 471~ o(D)E+DXB] o(D) carded. There cannot actually be @(g?A) term in the La-
grangian because there is no way for it to be a color singlet.

X[—o(D) E+DXB]+L,[A]. (6.25  So the leading piece of thé’c~*/5A? term of L,[A] is

O(g*A?). The explicit factor ofg* implies that it will be
This action may then be used to fix whatever gauge is desuppressed by two powers of the loop expansion parameter
sired. compared to th@(g®A?) terms in the actior{6.25, which
Note thatL,[A], though derived inA,=0 gauge, is determine theA propagator[And the A% and so forth terms
guage-invariant under general time-dependent gauge trangre similarly suppressed compared to ignA® and so forth
formations. The derivation iM,=0 gauge implied that termsin Eq.(6.25.]

L,[A] is invariant under timéadependengauge transfor- Similarly, the magnetic energy is
mations. Becausgk[ A] does not involve any time deriva- ) 5 _—
tives (and because | did not introduég into this term, it is V=0(A%)+0O(gA”)+O(g°A"). (6.29
then automatically invariant under time-dependent transfor- i o 4 .
mations as well. The possible terms arising from thé[ o~ "V V] term in
Eq. (6.23 are then of the form
C. The nature of L,[A] 5 5
-1 — 2p2
The coupling constang) is a convenient parameter for SALY ﬁv =0(1)+O(gA+O(g°AT) + - - -
counting powers of the loop expansion. At high temperature, (6.30

the parameter which controls the effectiveness of the loop
expansion is noy? by itself, but it is at least proportional to Again, O(1) can be discarded, ar@(gA) cannot appear in
an explicit factor ofg2. For analysis of static equilibrium the action, so the leading term gnmust beO(g?A?). This is
qguantities, for example, the loop expansion parameter isuppressed by one power of the loop expansion parameter
g®T/k (once appropriate resummations have been impleeompared to theD(g®A?) terms in the action6.25. The
mented for momentak=g?T. The fact that physics is some- analysis of the remaining term,dnis similar.
how treatable perturbatively fde=>g?T (after integrating out The conclusion is that the interactions ama@ngenerated
degrees of freedom that decouple at various physical threshyy L[ A] will all be suppressed by at least one power of the
olds) is a reflection of the fact that the size of gauge fieldloop expansion parameter, compared to those appearing in
fluctuations is perturbatively small for suck In Refs. the other terms of Eq6.25. In Ref.[12], Yaffe and | show
[11,12, for example, Yaffe and | use the loop expansion ofthat this suppression is enough to permit a next-to-leading-
the w<k<<m theory atk~ vy to compute corrections to color log order analysis of the color conductivity and the hot elec-
conductivity and hot electroweak baryon number violation.troweak baryon number violation rate without requiring use
The loop expansion is in that case an expansiog4i/k  of an explicit form forL,[A].
~[In(1/g)]" L. A word of caution about the above analysis is required,
To understand at what order in the loop expansion interhowever. The correspondence between explicit powegg of
actions in the Lagrangian might contribute, it is thereforeand the expansion parametgiT/k only works if one has an
important to understand what explicit factorsghre asso- effective theory that properly integrates out all of the physics
ciated with those interactions. Let us focus in particular onabove the scale you are interested in. For example, if one
the (horrible) terms ofL [ A]. First, note tha# only appears does perturbation theory in the originakT hard-thermal
in the combinationgA in o(D), sinceD=V +gA. So ex- loop effective theory(1.4), the loop expansion will break
pandingo (D) in powers ofg gives down atk~ vy: the loop expansion parameter will 162(1)
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instead of ordeg®T/k~g?T/y~[In(1/g)] . One must in- theory is used, therghouldbe no problem. However, for the
stead make the loop expansion in tem effective theory, sake of caution, it would be useful to have a much more
which incorporates the effects of collisions into the bareexplicit analysis of the suppression of thgf A] terms than |
propagators and vertices. As long as the correct effectivbave been able to give.
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